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A new global optimization method, Conformation-family Monte
Carlo, has been developed recently for searching the conforma-
tional space of macromolecules. In the present paper, we adapted
this method for prediction of crystal structures of organic mole-
cules without assuming any symmetry constraints except the
number of molecules in the unit cell. This method maintains a
database of low energy structures that are clustered into families.
The structures in this database are improved iteratively by a
Metropolis-type Monte Carlo procedure together with energy
minimization, in which the search is biased toward the regions of
the lowest energy families. The Conformation-family Monte Carlo
method is applied to a set of nine rigid and flexible organic
molecules by using two popular force fields, AMBER and W99. The
method performed well for the rigid molecules and reasonably
well for the molecules with torsional degrees of freedom.

Crystal structure prediction is one of the most challenging and
important problems in theoretical and applied crystal chem-

istry. It plays an extremely important role in fields in which the
rational design of new organic solids is involved (e.g., pharma-
ceuticals, explosives, pigments, photosensitive and optoelec-
tronic materials, etc.). The significance of crystal structure
prediction for solving the problem of polymorphism has been
discussed in detail (1, 2). Despite much effort by many scientific
groups over the past 20 years, the problem of crystal structure
prediction is far from being solved (3). Generally, ‘‘crystal
structure prediction’’ is understood as a search for the most
thermodynamically and kinetically favorable crystal structures
for a given molecular composition without using any experimen-
tal information (in many cases, however, experimental data are
included implicitly in the force field or taken into consideration
by conducting the search in the most common space groups).
Unfortunately, no theoretical methods capable of taking into
account the kinetic factors (conditions of nucleation and growth,
nature of solvent, etc.) have been developed. Therefore, crystal
structure prediction is based solely on thermodynamic consid-
erations and the assumption that the structure observed exper-
imentally corresponds to the global minimum of the free energy.
But, free energy is not a function of geometrical coordinates of
a single crystal structure; therefore, the traditional approach to
crystal structure prediction assumes that the free energy of a
crystal can be approximated by its potential energy (which can
be computed easily) with the lowest minima corresponding to
the structures observed experimentally.

There are two main obstacles making crystal structure pre-
diction based on potential energy calculations very difficult. First
of all, to calculate the potential energy of a crystal, which is
considered as a sum of pairwise atom–atom interactions (4), a
highly accurate interatomic potential is required. Several differ-
ent potentials have been proposed (5–8). Second, a search for
the global minimum on the potential energy surface has to be
carried out to predict the crystal structure for a given molecule.
The search has to be conducted in a multidimensional space with
the number of dimensions increasing rapidly with the number of
molecules in the unit cell and the complexity of the molecules.
Therefore, a reliable and efficient search method is required to

solve the problem. Several methods that can be used for crystal
structure prediction with varying degrees of confidence have
been developed, and these have been described in comprehen-
sive reviews (1, 3). Most of the methods are based on the use of
statistical information (most common space groups, symmetry
elements, etc.) derived from the Cambridge Structural Database
(CSD; ref. 9). Such an approach significantly reduces the di-
mensionality of the problem and, as a result, enables simpler
methods (for example, systematic or random search) to be used
(10, 11).

Thus far, only two global optimization methods have been
used for crystal structure prediction. One of these, which does
not rely on any statistical information about crystal packing, was
developed by Karfunkel and Gdanitz (12). It is based on Monte
Carlo simulated annealing with partial energy minimization
carried out in every Monte Carlo step. Another global optimi-
zation method used for crystal structure prediction is the self-
consistent basin-to-deformed-basin mapping method (13). It is
based on deforming and smoothing the original potential energy
surface, thereby greatly reducing the number of minima and
simplifying the conformational search. This method also does
not use statistical information. The self-consistent basin-to-
deformed-basin mapping method has been applied to the crystal
structure prediction of five small rigid organic molecules and to
evaluating potentials (13).

A new, highly efficient global optimization method, Confor-
mation-family Monte Carlo (CFMC), has been developed re-
cently (14). Initially it was used to search the conformational
space of proteins and identify their low energy conformations. In
this paper we present a version of this method applied to crystal
structure prediction. The efficiency of the method is demon-
strated by predicting crystal structures of different degrees of
complexity. Global optimizations are carried out for four rigid
and five flexible H-, C-, N-, and O-containing molecules by using
two different force fields, AMBER (5) and W99 (8). For rigid
molecules, we found that the CFMC method is more efficient
than the self-consistent basin-to-deformed-basin mapping
method.

Methods
CFMC. The CFMC method can be considered as an extension of
the Monte Carlo-plus-minimization method (15, 16). The most
important difference between the original Monte Carlo-plus-
minimization and CFMC methods is that the latter does not use
a single conformation for a Monte Carlo step; instead, it uses the
whole family of conformations (and consequently only the moves
between families are accepted or rejected), and the database of
the families and structures encountered during the calculations
is maintained throughout the simulation. The CFMC method
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already has been used successfully for predicting protein struc-
tures in a united-residue representation (14).

The central element of the CFMC method is the structure
family database, which is an ensemble of structures clustered into
families. To control the computational expense, the number of
families and structures within each family are restricted to Nf
families and Nc structures, respectively.

The structure family database for a CFMC run is initialized by
successively generating Nf random structures and minimizing
them. Each random structure is generated in two steps. First, the
unit cell lengths (a, b, and c) are chosen at random between
maximum and minimum values. The maximum length is calcu-
lated as 1.5nmolrmol, where nmol is the number of molecules in the
unit cell and rmol is the molecular radius. The minimum length
is half the maximum length. All the initial unit cell angles are set
to 90°. Each molecule then is placed at a randomly selected
position in the unit cell with fractional coordinates equal to
[iynmol, jynmol, and kynmol], where i, j, and k are random integer
numbers from 0 to nmol 2 1. It has been shown (17) that these
positions are most likely to be occupied in a typical unit cell. The
orientations of each molecule are chosen at random. For each
randomly generated structure, the energy is evaluated before
minimizing it; if this initial energy is higher than 108 kcalymol
(which indicates numerous clashes between atoms), the structure
is rejected, and another random structure is generated. The set
of minimized structures and their families constitute the initial
structure family database.

Any two structures described by sets of structural parameters
x1 and x2 belong to the same family of structures if the sets x1 and
x2 are different descriptions of the same crystal structure and can
be transformed one into the other. From a crystallographic point
of view, the kinds of structures described above are equivalent
(both can be transformed to the same standard representation),
but from a numerical point of view they represent two com-
pletely different points in the phase-space of our variables, and
therefore treating them as different structures makes the search
much wider. The method used for structure comparison is
discussed in the last subsection.

In each iteration of a CFMC run a new structure C9 is
generated from a structure C already present in the structure
family database. This structure C is chosen from a specific family
F, denoted the generative family. As the CFMC simulation
progresses, this generative family can change, as described
below. For the first CFMC iteration, the generative family is set
to the lowest energy family in the initial structure family
database. An iteration of CFMC consists of four steps, as
follows.

Step 1. A structure C is chosen from the generative family F with
a probability proportional to its Boltzmann weight.

Step 2. This structure C is modified to yield a new structure C9.
(The methods for modifying structures are described in the next
subsection.) If the new structure is identical to another structure
C99 in the database (within numerical error), the lower energy
structure of the pair is stored in the database, and the algorithm
returns to step 1.

Step 3a. If the new structure C9 does not belong to any family in
the database, a new family F9 is created, the sole member of
which is C9 (of course, structures may be added to this new family
in subsequent CFMC iterations, as shown in step 3b). If the
number of families in the database exceeds the limit Nf, the
family with the highest energy is eliminated. The algorithm then
jumps to step 4.

Step 3b. If the new structure C9 belongs to a family F9 in the
database, the structure is added to this family. If the number of

structures in the family exceeds the limit Nc, the structure with
the highest energy is eliminated. The algorithm then jumps to
step 4.

Step 4. If the new family F9 found in step 3 is not identical to the
original generative family F of step 1, a Metropolis criterion is
applied to determine whether to make F9 the generative family.
F9 becomes the new generative family if it has a lower energy
than F or if its Boltzmann factor exp(2bDE) [with DE 5 (E 2
Emin)y(Emax 2 Emin), where Emax and Emin are maximum and
minimum energies in a family (when choosing from a family) or
in the whole database (when evaluating moves)] is greater than
a randomly generated number in the interval (0,1), where b §
1ykT as usual (b was equal to 0.01 in the present work) and DE
is the energy difference between families F and F9. (The energy
of a family is defined as that of its lowest energy structure.) If this
Metropolis criterion is not met, then F remains the generative
family. At this point, the algorithm returns to step 1, and a new
CFMC iteration begins.

Methods for Producing New Structures. In the second step of a
CFMC iteration, the structure C is modified to yield a new
structure C9. There are two general classes of moves used in the
CFMC method: internal (or local) moves, intended to generate
structures geometrically close to the starting structure C, and
external (global) moves, intended to search the variable space for
new families (and usually producing structures geometrically
distant from the starting structure C). Within each class, there
are three kinds of moves: perturbation, search, and averaging.
There are 10 moves in the CFMC algorithm, five internal and five
external.

Perturbations are used for searching the space of the molec-
ular translations, rotations, and unit cell parameters. In the
internal move 1 and the external move 1 all translations (posi-
tions) of molecules are perturbed randomly, whereas in the
internal move 2 (and the external move 2) all the Eulerian angles
of rotation of all molecules are perturbed randomly. The above
internal moves differ form the corresponding external moves
only by the range of perturbations. The external move 3 ran-
domly perturbs all possible degrees of freedom (i.e., unit cell
parameters, rotations, and translations for all molecules). The
internal move 3 searches the rotations of all molecules in a
systematic way by generating a three-dimensional grid for rota-
tional degrees of freedom of each molecule one by one.

The external move 4 and the internal move 4 are both
averaging. This is an entirely different kind of move for which
two different structures are necessary. For external averaging,
these structures are chosen from different families, whereas for
internal averaging, they are chosen from the same family. From
these two structures, an averaged (or interpolated) structure
then is calculated by using a randomly chosen ‘‘mixing ratio’’ x
(in the range from 0 to 1). Thus, every variable ni

* of the averaged
structure is calculated according to the formula:

v*i 5 vi
~1!x 1 vi

~2!~1 2 x! [1]

where ni
(2)and ni

(1) correspond to the two structures.
The external and internal moves 5 change the internal degrees

of freedom of flexible molecules (and they are not used for rigid
molecules). All torsional angles in all molecules are perturbed in
these moves. A torsional angle is perturbed randomly when there
is only one low energy conformation for that angle; otherwise
the angle is perturbed with a step equal to the angular dis-
tance between low energy conformations to cover all distinct
conformations.

Energy minimization was carried out for all newly generated
structures. However, in most cases, random perturbations create
structures with numerous atomic clashes, and a simple local
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minimization is very ineffective. This is because molecules in a
crystal are tightly packed, and there is almost no room for any
movement. The other problem that must be addressed is that
some structures produced may be relatively large and loosely
packed. The intermolecular interactions in such a loosely packed
cell are relatively weak (i.e., the gradient components corre-
sponding to variables that determine the spacial extension of a
crystal are very small); thus, a local minimizer is usually found
to choose to change unit cell angles instead of its lengths
and molecular positions. This leads to extremely distorted struc-
tures (with one or more unit cell angles being unusually low),
which are unphysical and cause serious numerical (accuracy)
problems. This problem has been described previously in the
literature (12).

To avoid these problems the local minimization is carried out
in three steps. In the first and second steps, all angular variables
are fixed. In the first step, the clashes are removed in the central
unit cell only, i.e., the other unit cells are not taken into account.
Each molecule (except molecule 1) is translated along the vector
pointing from the first molecule to the current molecule until all
clashes are removed. Then it is moved back along the same vector
until the first intermolecular contacts are established. Second,
the surrounding unit cells are added, and the clashes between
molecules in different unit cells are relieved by adjusting unit cell
parameters. These two steps are very similar to the procedure
used by Gdanitz (18). Finally, in the third step local minimization
with respect to all variables is carried out by using the SUMSL
algorithm (19).

Calculation of Potential Energy. The algorithm described by Gibson
and Scheraga (20) was used for energy and gradient calculations.
The potential energy is assumed to be a sum of pairwise
interatomic interactions and includes three terms: electrostatic,
nonbonded, and torsional:

E 5 Eel 1 Enb 1 Etor. [2]

Electrostatic interatomic interactions were modeled by the
Coulomb formula,

Eel~r! 5
qiqj

rij
, [3]

where qi and qj are point charges positioned on the atom sites.
The electrostatic energy was calculated by using the Ewald
summation (21) without including a dipole moment correction
term.

The energy of nonbonded interactions was calculated with the
Lennard-Jones ‘‘6–12’’ and Buckingham ‘‘6-exp’’ potential func-
tions. The atom–atom contributions were summed in a special
way to avoid small discontinuities of energy caused by the fact
that nonbonded energy terms vanish only at infinity; these terms
were smoothed (‘‘feathered’’) to zero at a large but finite
distance by using a cubic spline and a cutoff (20), chosen so as
to ensure that the energy and its first derivative are continuous
everywhere. The 6–12 nonbonded atom–atom potential used in
the present work is described by

E~r! 5 5 2
A
r6 1

B
r12 , r # r1

ar3 1 br2 1 cr 1 d , r1 # r # r2

0, r $ r2

[4]

where a, b, c, d, and r1 and r2 are constants calculated for each
pair of atoms (see ref. 20 for more details).

In the ‘‘6-exp-1’’ potential function, the total energy of an
atom–atom interaction may go to minus infinity at short dis-
tances because of the much slower changes in the 6-exp part of

the potential compared with the electrostatic part. To avoid this
problem, a cubic approximation of the nonbonded energy was
used for distances shorter than r1, the equilibrium interatomic
distance for a given pair of atoms minus 1 Å; the parameters a0
and b0 were chosen so as to ensure that the energy and its first
derivatives were continuous. The 6-exp potential is described by

E~r! 5 5
a0r3 1 b0, r # r1

2
A
r6 1 B exp~2Cr!, r1 # r # r2

ar3 1 br2 1 cr 1 d, r2 # r # r3

0, r $ r4

[5]

The torsional energy is calculated with a third-order Fourier
expansion.

Etor 5 O
m 5 1

3

km@1 2 cos~mv!#, [6]

where v is a torsional angle; k1, k2, and k3 are torsional
parameters obtained by fitting the torsional energy to the
difference between ab initio and molecular mechanic (sum of
nonbonded and electrostatic) profiles.

The basis vectors of the unit cell a, b, and c were chosen so that
the direction of a coincides with the x axis, the vector b lies in the
(x,y) plane, and the lattice vectors form a right-handed system.
No crystal symmetry was assumed. During energy minimization,
the torsional angles around bonds and all translation vectors tm
of molecules, Euler angles fm, um, cm, and components ax, bx,
by, cx, cy, and cz of the lattice vectors were allowed to vary
independently.

Structure Comparison. Our procedure for structure comparison
consists of three steps. In the first step, the total lattice energies
and the volumes of the unit cells of two structures i and j are
compared. If the deviations are greater than some preset values,
the structures are considered to be different. Otherwise, the
second step consisting of comparison of unit cell parameters a,
b, c, a, b, and g is carried out. If the deviations in structural
parameters are small (lower than some preset threshold), the
structures are identical.

To distinguish between different structures and structures that
are different representations of the same structure, the following
procedure is used. For each structure, all interatomic distances
within a cutoff radius rd are calculated and sorted according to
their values, and the shortest 1,000 of these are stored. The cutoff
radius is chosen as dy2 , rd , 3dy2, where d is the largest
component of the unit cell vectors. This set of distances is used
in the final (third) step of structure comparison. If all of the
differences (rk

i 2 rk
j ) are lower than some threshold value, the

structures i and j are different representations of the same
structure; otherwise they are different structures.

Results and Discussion
A compilation of the molecules considered in the present paper
together with their CSD reference codes is presented in Fig. 1.
These molecules can be divided into two groups: (i) rigid
molecules without internal rotations and (ii) f lexible molecules
with different numbers of internal rotations. The molecule
containing an aliphatic ring was considered as rigid. The mo-
lecular parameters (bond lengths and bond and torsional angles)
were taken from x-ray diffraction or neutron diffraction data
(neutron structures were preferred when available). If more than
one CSD entry was found for a given molecule, we selected the
structure with the lowest x-ray diffraction discrepancy factor (R).
Positions of the hydrogen atoms were adjusted to give the
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average experimental bond lengths of 1.083 Å for C–H, 1.009 Å
for N–H, and 0.983 Å for O–H, as obtained by neutron diffrac-
tion (22). The atomic charges were obtained by fitting (23) to the
molecular electrostatic potential obtained by ab initio calcula-
tions (ref. 24; HF 6-31G* in the case of AMBER and HF
6-31G** in the case of the W99 force field) for the experimental
geometry. Additional lone-pair electron sites were included for
nitrogens in heterocycles and in nonplanar amino groups as
suggested in ref. 8.

Local Minimization of Experimental Structures. To obtain the ref-
erence structures for global search, all experimental crystal
structures were locally minimized with the AMBER and W99
force fields. The parameters of the minimized experimental
structures as well as the initial experimental parameters are
given in Table 1.

On the average, deviations of the parameters of the minimized
structures from their experimental values are much larger for the
five flexible molecules than for the four rigid ones. This is
expected, because even quite small deviations in torsional angles
may cause significant changes in molecular conformation. This
was the case for FORAMO01 (AMBER and W99) for which the
largest average deviations of the unit cell parameters of 8.6% for
AMBER and 6.2% for W99 were obtained. The experimental
values of the torsional angles were reproduced quite well for all
f lexible molecules except FORAMO01 and LIQVUC. Devia-
tions of the torsional angles obtained for LIQVUC influenced
the quality of the minimized crystal structure insignificantly
because the largest deviations were obtained for rotations of
‘‘spherical’’ methyl groups. Average deviations of the unit cell
parameters from their experimental values for the rigid mole-
cules are quite small and similar for both force fields (1.92% for
AMBER and 2.23% for W99). Larger deviations were observed
for IMIDAZ06 crystal structure minimized with the AMBER
(4.36%) and W99 (5.46%) potentials. The symmetry of the
experimental structures was preserved after energy minimiza-
tion for all rigid molecules as well as for DNITBZ03, NITPOL03
and FORAMO01. For BENZON10 and LIQVUC, local mini-
mization of the lattice energy without any symmetry constraints
led to the space group P21 with two independent molecules in the
unit cell, suggesting defects in the force fields for these two
molecules.

Global Optimization. Global optimization runs were carried out
for all the molecules shown in Fig. 1 using 5,000 local minimi-

Fig. 1. Molecular structures considered in this paper.

Table 1. Structural parameters of experimental and locally minimized experimental structures

CSD reference code Structure Space group V, Å3 a, Å b, Å c, Å a, ° b, ° g, ° v, °*

BENZEN exp. Pbca, Z 5 4 506.6 7.46 9.66 7.03 90.0 90.0 90.0 —
AMBER Pbca, Z 5 4 455.6 7.36 9.20 6.72 90.0 90.0 90.0 —
W99 Pbca, Z 5 4 510.8 7.54 9.54 7.09 90.0 90.0 90.0 —

PRMDIN exp. Pna21, Z 5 4 403.7 11.56 9.46 3.69 90.0 90.0 90.0 —
AMBER Pna21, Z 5 4 393.7 11.22 9.74 3.61 90.0 90.0 90.0 —
W99 Pna21, Z 5 4 428.4 11.47 9.94 3.76 90.0 90.0 90.0 —

IMAZOL06 exp. P21yc, Z 5 4 347.3 7.57 5.37 9.79 90.0 119.1 90.0 —
AMBER P21yc, Z 5 4 326.0 8.12 4.81 9.85 90.0 121.9 90.0 —
W99 P21yc, Z 5 4 368.7 6.91 6.25 9.40 90.0 114.7 90.1 —

PHYPHM exp. P212121, Z 5 4 747.6 6.14 12.25 9.94 90.0 90.0 90.0 —
AMBER P212121, Z 5 4 726.6 6.13 12.09 9.81 90.0 90.0 90.0 —
W99 P212121, Z 5 4 770.4 6.51 12.32 9.61 90.0 90.0 90.0 —

DNITBZ03 exp. P21ya, Z 5 2 333.5 10.94 5.38 5.67 90.0 92.1 90.0 10.2; 10.2
AMBER P21ya, Z 5 2 331.5 10.55 5.79 5.47 90.0 97.5 90.0 10.6; 210.6
W99 P21ya, Z 5 2 377.7 11.11 6.06 5.68 90.0 99.2 90.0 10.4; 210.6

NHPOL03 exp. P21yc, Z 5 4 611.9 6.17 8.84 11.54 90.0 103.4 90.0 21.2; 18.5
AMBER P21yc, Z 5 4 594.1 6.13 8.96 11.13 90.0 103.7 90.0 23.3; 9.5
W99 P21yc, Z 5 4 671.8 6.58 9.14 11.61 90.0 105.8 90.0 20.4; 16.3

FORAMO01 exp. P212121, Z 5 4 277.2 8.19 7.11 4.76 90.0 90.0 90.0 211.9; 1.7; 1.6
AMBER P212121, Z 5 4 261.6 6.85 8.89 4.29 90.0 90.0 90.0 25.9; 0.1; 6.0
W99 P212121, Z 5 4 300.8 7.70 8.84 4.42 90.1 90.0 90.0 3.0; 0.4; 3.4

BENZON10 exp. P21yc, Z 5 4 1011.9 12.16 7.92 11.94 90.0 118.4 90.0 211.7; 176.1; 256.9
AMBER P21, Z 5 4 923.4 11.87 7.52 11.96 90.0 120.1 90.0 210.8; 179.8; 254.1
W99 P21yc, Z 5 4 1017.0 11.97 8.37 11.85 90.0 121.0 90.0 20.7; 179.5; 266.8

LIQVUC exp. P21yn, Z 5 4 435.5 6.17 8.01 9.26 90.0 107.7 90.0 68.6; 69.7; 68.5; 2129.7
AMBER P21, Z 5 4 405.3 5.98 7.34 10.04 90.0 113.2 90.0 258.2; 143.2; 5.1; 56.5
W99 P21, Z 5 4 485.9 6.237 8.315 9.85 90.0 107.99 90.1 82.3; 69.5; 69.0; 220.3

*Torsional angle.
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zations in each global optimization. The number of molecules in
the unit cell, Z, was chosen as the number of molecules in the
experimental crystal structure, and no symmetry constraints
were used. In the case of chiral molecules, two global optimi-
zation runs have to be carried out: one with the L (or R)
enantiomer and the other one with the racemic mixture. The only
chiral molecule (according to the x-ray experimental data) in our
list is PHYPHM, which forms an optically active crystal with the
symmetry P212121. The results of global minimizations with the
W99 and the AMBER force fields are summarized in Table 2.

The first four molecules in Table 2 are rigid. In its current
form, the method seems to perform well for these molecules;
the energy of the global minimum found for each molecule is
always lower or equal to the energy of the corresponding
minimized experimental structure. In all cases except one
(PRMDIN with the AMBER force field), the minimized
experimental structure was found with both force fields even
when it was not one of the lowest minima, as in the case of
IMAZOL06 (with the W99 force field) where the minimized
experimental structure has a high rank of 24. The only
molecule for which the reference structure was not found is
PRMDIN, but its rank is '82 with AMBER, which is out of
the search range. Both force fields performed reasonably well
for the rigid molecules except IMAZOL06 with the W99 and
PRMDIN with the AMBER force field.

The results with the set of flexible molecules are not as good
as with the rigid molecules. This set of flexible molecules consists
of molecules of different levels of f lexibility varying from two to
four torsional angles per molecule. The simplest of all was
DNITBZ03 (two torsional angles and Z 5 2) for which the search
method as well as both force fields performed very well in finding
the reference structure as the global minimum. The second

molecule with two torsional degrees of freedom was NITPOL03,
but this crystal is more complicated because of the possibility of
forming different networks of hydrogen bonds. The minimized
experimental structure had the rank of 8 and 18 for the AMBER
and the W99 force fields, respectively, and was never found by
the global search. The two molecules with three torsional
degrees of freedom were FORAMO01 and BENZON10. In the
case of BENZON10, the search method failed to produce
structures lower or equal in energy to the minimized experi-
mental structure. The crystal structure of FORAMO01 probably
was the most difficult to predict among all structures considered
in this paper. The number of possible hydrogen bond networks
for this molecule is very large, and the difference in stability
between them is usually small. Thus, the quality of the atom–
atom potentials used should be crucial in this case. The mini-
mized experimental structure of FORAMO01 has an extremely
high rank for both force fields. Taking into account large
structural deviations obtained for the reference structure rela-
tive to the experimental one (Table 1), we conclude that both
force fields are clearly inadequate for this molecule, making the
prediction almost impossible. For the last two molecules in the
set, the search method had problems locating low energy struc-
tures. For LIQVUC, the reference structure was not found either
for the AMBER or W99 force field. With W99, the reference
structure had an energy slightly higher (0.04 kcalymol) than the
energy of the lowest minimum found. The a, b, and c unit cell
parameters and the molecular torsional angles are similar for the
reference and for our lowest energy structures, although the
crystal structures are different. These results suggest that the
presence of additional torsional degrees of freedom requires
more extensive search than that used in this work.

The global optimization results show that the method per-
forms well for rigid molecules and simple f lexible molecules,
although for molecules with a larger number of torsional
degrees of freedom, the search does not cover the conforma-
tional space as well. Most likely the reason is an insufficient
number of local minimizations during the global search. The
CFMC method applied to a small protein such as Protein A
(ref. 12; 43 principal degrees of freedom) usually required
50,000 local minimizations to converge. There is no reason to
believe that the global optimization of crystals is a less
demanding task. However, the energy calculation for a crystal
is quite expensive, and this has limited us thus far to the 5,000
local minimizations per run. Reduction of the cost of a single
local energy minimization would probably improve the per-
formance of the algorithm.
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